Least-squares Methods for Linear Elasticity Based on a Discrete minus One Inner Product

نویسندگان

  • JAMES H. BRAMBLE
  • RAYTCHO D. LAZAROV
  • JOSEPH E. PASCIAK
چکیده

The purpose of this paper is to develop and analyze least-squares approximations for elasticity problems. The major advantage of the least-square formulation is that it does not require that the classical Ladyzhenskaya-Babǔska-Brezzi (LBB) condition be satisfied. By employing least-squares functionals which involve a discrete inner product which is related to the inner product in H−1(Ω) (the Sobolev space of order minus one on Ω) we develop a finite element method which is unconditionally stable for problems with traction type of boundary conditions and for almost and incompressible elastic media. The use of such inner products (applied to second order problems) was proposed in an earlier paper by Bramble, Lazarov and Pasciak [7].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A least-squares approach based on a discrete minus one inner product for first order systems

The purpose of this paper is to develop and analyze a least-squares approximation to a first order system. The first order system represents a reformulation of a second order elliptic boundary value problem which may be indefinite and/or nonsymmetric. The approach taken here is novel in that the least-squares functional employed involves a discrete inner product which is related to the inner pr...

متن کامل

First-order System Least- Squares for Second-order Partial Diierential Equations: Part Ii. Siam J

analysis of iterative substructuring algorithms for elliptic problems in three dimensions. Least-squares mixed-nite elements for second-order elliptic problems. A least-squares approach based on a discrete minus one inner product for rst order systems. Technical report, Brookhaven National Laboratory, 1994. 4] J. H. Bramble and J. E. Pasciak. Least-squares methods for Stokes equations based on ...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

First-order System Least Squares for the Stokes Equations, with Application to Linear Elasticity∗

Following our earlier work on general second-order scalar equations, here we develop a least-squares functional for the twoand three-dimensional Stokes equations, generalized slightly by allowing a pressure term in the continuity equation. By introducing a velocity flux variable and associated curl and trace equations, we are able to establish ellipticity in an H1 product norm appropriately wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001